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degrees and .26(.03) km/sec.
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Section 1
Introduction

The momtonng ofa comprehensive test ban treaty (CTBT) depends rather cntlcally on data
collected from various networks of recording devices. Generally, there will be collections of
small local seismic or acoustic arrays, providing as input, signals from a number of sensors
recording & common event. For example, Figure 1 shows time series from a small array
of microbarographic instruments that recorded a nuclear explosion, detonated about 25 km
south of Christmas Island. The dimensions and configuration of the array are unknown.so
the pseudo data are constructed by aligning to a given velocity and azimuth assuming 1 km
sides on the array. The problems of interest for this local array involve first detecting the
signal and then identifying parameters or features that can be used to locate the source of
the event. It would also be critical to determine whether the detected signal belongs to a
benign class of events such as might be produced by earthquakes or mining explosions or
whether it might possibly be an explosion of interest to the nuclear monitoring community.
While the second discrimination aspect of the above problem is of great interest, it is the
first question, namely the local array characteristics that influence location capabllxty, that
has been the focus of this present contract.
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Figure 1. Small Fry series after aligning and delaying to correspond with an approximate
velocity of .3 km/sec and an azimuth of 225 degrees sampled at .1 sec.
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If it is supposed that a detection is available by one of the optimum processors to be consid-
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ered later in this report, it will be essential to have estimators for parameters related to the
location of the event. It is clear that the angle of approach or azimuth and the velocity of the
signal will be related to its origin. In general, the local array provides estimators for velocity
and azimuth or for two wave-numbers 8 = (0,,6;)’ that are functionally related to both the
velocity and azimuth, as well as the location z = (z1,23)’ of the event. We indicate this
dependence by writing 8,(z),05(z),...,0,(z) for the wave-number vectors as they might be
observed on n local arrays. The global array consists of n local arrays and the combining or
Jfusing the local array estimators into an overall location estimator and its uncertainty is the
objective of the analysis.

As an example of a collection of small arrays monitoring events, consider Figure 2 which
shows 14 local arrays proposed for the southwest quadrant of the world-wide network of
infrasound detectors to be incorporated into the International Monitoring System, denoted
by IMS in the sequel. For orientation purposes, the local arrays labeled 1,2,3,4,6 and 11 are
all located on the South American continent. Other stations are in the oceans to the west
and east, but still south of the equator. The two hypothetical events, marked by +, are in
the oceans. Location ellipses for these events developed in this report are functions of the
geometry of the local array, local signal to noise ratios for the event, signal decorrelation
and the time-bandwidth product. An additional important factor influencing the size of the
confidence ellipses will be the configuration of detecting stations.
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Figure 2. Proposed IMS infrasound arrays in the southwest quadrant and two hypothet-
ical event locations marked by +.

As indicated above, the objective of this project is to develop a theory that relates the

2



local array performance to the location capabilities of a global network consisting of some
configuration of detecting local arrays. This requires a complete investigation of local array
detection and estimation using maximum likelihood; the details leading to the equations in

Section 2 can be found in Shumway et al (1999).

We begin in Section 2 by estimating the wave-number parameters under the assumption that
the signal and noise spectral matrices are fixed. As an adjunct to the estimation results,
we obtain maximum likelihood estimators for the signal and noise spectra in the perfectly
corrrelated case using a frequency domain version of analysis of variance. In the decorrelated
signal case, we develop a version of the EM algorithm that produces separate estimators of
the signal spectral matrix and the noise spectrum. This will provide estimated values for
the signal coherence in the decorrelated case. As inputs for the location procedure, we also
require estimated values for the wave-number parameters, say O for the k = 1,...,n local
arrays, along with their estimated variances and covariances. These estimated parameters
lead to maximum likelihood estimators for velocity and azimuth. The maximum likelihood
estimators for the wave-number parameters can be obtained as the maximizers of either the
beam power or the F-statistic and we give the variances and covariances of these estima-
tors under both the perfect correlation signal model and for the decorrelated signal model.
Finally, we examine the variance of the estimated azimuth for various array geometries in
order to evaluate the proposed triangular local arrays with various baselines.

The above results enable the development of optimal detectors for the local array that are
based on frequency domain likelihood arguments, leading to statistics that are monotone
functions of the usual beam power. In practice, for a perfectly correlated signal model
the optimal test statistic is the ratio of the beam power to the noise power and has the F
distribution. In the decorrelated signal case, which may be common when sensors in the
local array are quite far apart, we obtain the likelihood ratio detector as a weighted linear
. combination of sample cross-spectra. o

Section 3 considers optimal methods for fusing the local array wave-number vectors b,,...,0,
into an overall location and its associated uncertainty, as determined by 90 and 95% confi-
dence or posterior probability ellipses. We consider classical nonlinear least squares methods,
with ellipses determined assuming the variances are either unknown (Flinn, 1965), unknown
(Everndon, 1969) or unknown with a specified prior distribution (Jordan and Sverdrup,
1981, Bratt and Bache, 1988). In particular, we evaluate the performance in locating the
two events shown in Figure 2 as a function of several array geometries, signal to noise ratios
and detecting configurations. :




Section 2
Local Array Detection and Estimation

The local array performance can be evaluated by considering the model
¥;(t) = 85t — T;(0)] + ny(2) (1)

for j=1,2,...,N sensors recording a received signal s;(t), delayed by 7;(8) and corrupted
by an additive noise n;(t). Note that @ = (6,,68) is a vector of wave-number parameters
that are nonlinearly related to velocity and azimuth and to the source location of the signal,
say £ = (z,,73)". If the coordinates of the jth sensor are denoted by r; = (r;1,r;2)" and the
signal is a plane wave at frequency f, measured in cycles per point, we may take

ri0

Ty(0) = - (2

as giving the relation between the time delay and the location of the jth sensor. Furthermore,

_f
=TT @)
and 0
a=tan™! (-0&) (4)

give the relations to velocity V' and azimuth o, where a is measured clockwise in radians.
Generally we convert to degrees by multiplying by 180/x and interpret the angle obtained,
beginning with 0 degrees north. [|A||?> = tr AA* will denote the usual squared norm of the
matrix A, where * denotes the complex conjugate transpose of the matrix.

For assumptions, we will always take the noise to be spatially white with N x N spectral
matrix P,(f)In, where Iy denotes the N x N identity matrix. The signal vector s; =
(81(t),...,5n(t))’ is assumed to be stationary with unknown N x N spectral matrix £(f) =
{0i(f),4,5 =1,..., N} in the general decorrelated signal case, with squared signal coherence

() = oi(f)osi(f)’

which might possibly form the basis for a signal model. As is customary in these kinds of
problems, the signal and noise are assumed to be completely uncorrelated.

A simplification of the above model is the case of perfect signal correlation, where one might
as well assume the signal to be identical and random on each sensor, i.e.

yi(t) = s[t — T;(0)] + n;(t), (5)
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with the added noise being uncorrelated between sensors and with identical spectrum Fo(f)
on each sensor. As will be seen later, this simplifies the analysis since we may now assume
that the signal spectrum is F,(f) on each channel and that the mgnal spectral matrix is of
the form P,(f)Ix. ‘

It is convenient to consider first the maximum likelihood estimation of the wave-number
parameters for the two signal models (1) and (5) under the assumption that the signal and
noise spectral matrices are known. Then, we move to estimating the signal and noise spectral
matrices, conditionally on a fixed wave-number, by maximum likelihood. The optimum
detector is based on the previous two results and the distribution theory of the F-statistic
obtained allows a quantitative assessment for the significance of the detected signal.

2.1 Estimation of Wave-Number Parameters.

The estimation of the wave-number vector @ is most easily approached using the Whit-
tle likelihood, expressed in terms of the probability approximate large sample probability
distribution of the discrete Fourier transform (DFT) of the observed data, namely

T-1

Yie=T7'? 3 yi(t)e ™%, (6)

t=0
where f; = 4r/T,¢ = 1,...,L are a collection of frequencies in the neighborhood of some
center frequency f, with £ a sequence of adjacent integers, chosen so that the collected ¢1/T
form a band that encloses the desired center frequency. The N x1 vectors Y, = (Yig,...,Yne)
are assumed to have a common multivariate complex normal distribution with zero mean
and complex covariance matrix

£,(10) = PuNe@207 + PNy, (7)
where _ _ v
2(0) = ("0 .. erriily

denotes the Fourier transform of the vector of delays. Details involving the maximizing the
~of the Whittle likelihood for the two cases below can be found in Shumway et al (1999).

CAsE I: PERFECTLY CORRELATED SIGNALS
- In the case of the perfectly correlated signal model (5), the spectral matrix will be of the
form (7) and the log likelihood will be a monotone function of the beam power

L

B(®)=3,

=1

which is the usual observed power along a direction corresponding to the wave-number 6.
Note that this is the usual beam power and is often realized by filtering the received data
using a bandpass filter and then performing the beam operation in the time domain. -

EY e 21rs1"0

J=1

(8)
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The main problem with using (8) directly as a signal detector is that its performance depends
on the unknown signal and noise spectra, P,(f) and P,(f) under the hypothesis that a signal
is present and on P,(f) when the signal is absent. We note that the approximate distribution

of the test statistic is 2
BO)/N ~ (Ru(f) + NR(1)) L,

where the notation x3, denotes a chi-squared random variable with m degrees of freedom.
Hence, the detection results will depend upon the number of sensors and the the unknown
signal and noise parameters. The maximum likelihood estimators for these nuisance param-
eters are given in Section 2.2 and we note that there will be an optimal F-statistic in Section
2.3 with a distribution under noise alone that does not depend on the unknown signal and
noise spectra.

In order to estimate the wave-number vector, it is conventional to plot (8) as a function of
0 and to choose & as the maximizer of B(f) . The velocity and azimuth then follow from
(3) and (4). The large-sample variances and covariances of the maximizers of (8) have been
derived by Shumway et al (1999) using the Cramér-Rao lower bound. In this simple case,
we obtain the large-sample covariance matrices as a function of the covariance matrix of the
array coordinates

1 N
R= N Z(TJ' - T‘) (Tj - ‘i")' (9)
Jj=1
and the signal-to-noise ratio n
_FB(f
R (10

We have that @ will be approximately normal with mean equal to the true mean and ap-
proximate covariance matrix

cov() = (21 )nl,rjv( N)R—l (1)

Then, defining the vectors 8 = (6;,6,)' and 8 = (6,, —6,)', we have the covariance matrix of
velocity and azimuth given as

cov (Z) . 5(—2#%;%(” 1 ) “01”5 (R, (12)

2040 —f|0||0' AB

where

PA=| _flowwas  joyes a9 (13)

denotes a matrix function of the matrix A here and in the sequel. This exhibits nicely
the dependence of the variances of azimuth and velocity on the geometry of the array, as
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embodied in the covariance matrix of locations R. Note the variances also depend on the
signal to noise ratio r, so that we still need an estimator for this quantity. The simplicity of
the formulation in terms of the wave-number parameters is also appealing and it is the form
of (11) as opposed to (12) that suggests the use of wave-number in the location procedure. In
the Section 2.3, we consider estimating the signal and noise spectra using a spectral analysis
of variance. ' '

‘CASE II: SIGNAL DECORRELATION

Introducing signal decorrelation as a. complication in the model also complicates the estima-
tion of the wave-number and velocity and azimuth parameters. The likelihood corresponding
to the general signal model (7) with signal decorrelation leads to maximizing a generahzed
beam power of the form

CBO) = 577 ( By 3o 2 e Yie ()T b, (14)
v ) 5% | |
where the weights c;i(f) are elements of the matrix v
C(f) = v + Pa(H)Z7H) 7, | (15)

depénding specifically on the spectral matrix of the signal. We discuss a procedure for
estimating this matrix in the next section. Following through the asymptotic theory for the
maximizer 8 of GB(0) leads to a variance covariance matrix of the form

(o) ok B0 |
COY (06) ~ (21!) D (f)1 , ,(16)
where | _
D(f) = 3_cit(f)(r; = ri)(rs — r&)ous(f) (17)
ik
Again, we may convert into the covariance matrix for velocity and azimuth, obtaining
VG ~ 1 Pn(f) 1 —1. ‘ i
oo (50) = ap Lo "0 W

where the matnx function I'(-) has been defined previously in (13).

Because of the increased complexity of the maximum likelihood estimator for wave—number
in the decorrelated case, it may be more useful to evaluate the classical beam power estimator
for this case. Shumway et al (1999) show that for the estimator maximizing the beam power,

~ say 0, it follows that i
cov (0) ~ D;'WD;?, : (19)




where D, is just D in (17), with ¢;; =1 and
o = = 3 (rj—n)(ry —re)op(fow(f)
(27) Sk F e

+ 2P.(f) 2':”("5 = 1)(rj — re)owe(f) + 2P2(f)N*R. (20)
Jok

The covariance matrix of the velocity azimuth pair in this case becomes

vV o 1 Pu(f) 1 - -1
cov (&)..(2”), AT r(D;'wDrh). (21)

The above results characterize the variances and covariances of the usual beam power under
both the assumption that the signals are perfectly correlated and under the assumption
that there is a coherence that declines, possibly as a function of distance. The next section
examines these quantities as a function of array geometry at a fixed signal to noise ratio. It
should be noted that the equations given in this section provide a natural set of estimated
wave-numbers from each of n possible recording arrays, say fi,...,8, and a set of estimated
covariance matrices, say cov (8,),...,cov (5,,), associated with these estimated parameters.
The results enable studying the problem of designing arrays as in the next section as well as
the problem of fusing single array parameters into an optimal location as in Section 3.

2.2 Theoretical Performance of Single Arrays.

It is of interest to determine the array configuration that might be nearly optimal for de-
tection and azimuth estimation of surface and underground explosions. We note that the
analysis is complicated by the fact that the signal correlation will decrease as the separation
between the sensors increases. Blandford (1996) has made extrapolations for coherence as a
function of distance, using a model of Mack and Flinn (1971), for the distance ranges implied
by an array that will have three elements arranged in a triangle with vertices separated by d
kilometers and a center element. Generally speaking, coherence is reasonably high at low fre-
quencies that are less than, say .5 Hz., but that predicted coherence goes down significantly
at higher frequencies, particularly for the separation of around 1 km that predominates for
the triangular array under consideration.

It is interesting to compute the azimuthal standard deviations implied by the Mack-Flinn
coherence model for various intersensor separations on the simple triangular array with
a center element. The approach taken here assumes that either the values maximizing
the beam or the generalized beam will be used, with the variances computed from the
appropriate asymptotic expressions (18) and (21) respectively. Figure 3 shows the results at
various distance ranges and periods. It is clear that the beam and generalized beam behave
similarly, except at the longer distance ranges. The signal to noise ratio r was taken as
.78%, which is regarded as sufficient for an analyst to declare a detection. Bandwidths were
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.01,.02, .04 and .2 Hz respectively for cases (a)-(d) in Figure 3. Azimuthal uncerta.mtxes are
larger for longer periods and actually get quite small for the higher frequencies. One second
period standard deviations remain below 1 degree for intersensor distances less than one km.
It is interesting to note that the minimum variance is obtained for separation distances that .
are exactly equal to the period, i.e. 20 km for a 20 sec period, 10 km for a 10 second period,
5 km for a 5 second period and 1 km for a 1 second penod -

(a) 20 sec. Period (b) 10 sec. Period

0 10 20 30 40 0 5 10 15
distancelkm)

{c) 5 sec. Period

D%.s 1 15 2
distance(km) distance(km)

Flgure 3. Estimated large sample standard deviation of azimuth estimators as a func-
tion of baseline distance using the Mack-Flinn theoretical coherence model for
decorrelation with distance with the solid lines for the weighted beamforming
estimator and the dotted lines denoting simple beamforming.

Blandford (1996) also increases the number of elements, considering an N = 7 element array
consisting of the array above plus a small inverted interior triangle, with .2 km on a side.
With a signal to noise ratio of (.75)?, standard deviations were in the .5-2.0 degree range
for periods less than 5 seconds. However, there is little improvement for 10 and 20 second
periods. Blandford (1996) summarizes the computation by noting that for the 5 second
period signal, which is expected from a 1 kt atmospheric nuclear explosion, the 1 kilometer
array would have an azimuth estimation error approximately equal to the best historically
observed residual error. The conclusions are somewhat preliminary because the underlying
data is available only for much long periods and small inter-sensor distances. Analysis of
additional signal data at more appropriate periods and spacings is of critical importance.




2.3 Estimation of Signal and Noise Parameters.

In the previous sections, we have regarded the signal and noise spectra, P,(f), P,(f) in the
perfectly correlated case to be known. In the decorrelated case, we need to know the entire
N x N spectral signal matrix X(f). It turns out that maximum likelihood estimators are
available for these nuisance parameters and these estimators are summarized in the following

subsections.

CASE I: PERFECTLY CORRELATED SIGNALS
For the perfectly correlated case the log likelihood reduces to
B(6)
Py(N +1/7)

and may be maximized directly, as a function of the signal to noise ratio r and B,. We
obtain, for a fixed value of 0,

InL(6,P,, P,) x ~NLInP, — LIn(1 +rN) +3 (22)

_SSE(6)

P.(0) = A (23)
where SSE(f) is an error sum of squares about the fitted signal and may be written as
SSE(f) = Z”Z Ve - 5 (0) (24)
j=12=1
The signal spectrum is estimated by
B,(0) = ng - (B(o) NLP, (o)) (25)

We may then apply maximization alternatively, first for 6 over B(#) and then solve for

P,(0) and B,(B) using (23) and (25). A new value of § may be estimated by maximizing
the log likelihood (22) and the obvious iterative pattern will converge by standard alternate
maximization results (see Meng and Rubin, 1991). Alternatively, one may simply stop after
the first step.

CASE II: SIGNAL DECORRELATION

For the multivariate signal model with signal spectral matrix X(f), there are no simple es-
timators but we may still derive a procedure for maximizing the log likelihood using either
a Newton-Raphson approach and the vector scores and information matrix or the EM al-
gorithm on the complete data log likelihood. Now, regarding the generating model in the
frequency domain as

Yi¢ = 2j(0)Sje + Njz, (26)

we may write the vector version as

=Z(0)S,+ N,, (27)
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where Z(0) = dmg(zl (0), ,zN(O)) is a diagonal and S; = (Sy¢, Sa¢, - - -, Sive)' is the random
frequency domain signal vector with spectral matrix (/). Consndenng the complete data,
in the sense of Dempster et al (1977), as the signal vector above plus the noise vectors

Ny, N,,...,Ny, we obtain

lnL(OZP) = -LInISI ZS‘E"S;

=1

- wA-LYINGE @
v _ Faig

for the complete-data log likelihood. To maximize the original incomplete data log likelihood,
we consider applying the Ezpected Conditional Mazimization (ECM) algorithm of Meng
_and Rubin (1993). In this version of the EM algorithm, we apply the expectation and
maximization steps for a given 0, where @ is the maximizer for a fixed £, P,. Note that the
EM algorithm of Dempster Laird and Rubin (1977) is a rather convenient way of handling
maximum likelihood estimation in multidimensional random signal context (see Shumway,
1988). Now applying the E-step of the EM algorithm to the complete data log likelihood
~ above for a fixed 8 gives

$ =L z(s,(o)s; (8) + 2.(9)), (29)
_ ¢ 4
for the next iterate of the signal spectral matrix, where o
. ) . ,
5,0) = (f + P,,z*l) Z°(0)Y, . (30)
and . o . ' '
£(0) = P, (1 + P,,E“) , | | (31)
using results from Shumway et al (1999). The estimator for the noise spectrum will be
P = (VD) (17 - ZO)30)1 + 6(2O)56)27(0))) (32)
, ¢ '

To apply the iterative ECM algorithm, one might use the following sequence of steps.

1. Determine an initial estimator for @ as the maximizer of the beam power B(0) as given
by (8).

2. Compute initial estimators for P, and ¥ = P, 1, assuming no signal correlation, using
(23) and (25).

3. Update 5,(8) and £(9) from (30) and (31).
4. Update £ and P, using (29) and (32).
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5. Repeat steps 3. and 4. to convergence
6. Update 8 by finding the maximizer of GB(0) in (29).
7. Return to 3.

The above procedure is rather involved and it is often the case that one can estimate the
signal spectral matrix from prior data, assuming that the signal spectral matrix in known
in the generalized beamformed estimator GB(6). This is illustrated in Section 2.2 where we
assigned a functional form to |p;i|, where o:(f) = P,(f)|p;:| based on a theoretical relation
between coherence and distance.

2.4 Signal Detection.

Detecting a signal depends on developing a test statistic that does not depend on any nuisance
parameters under noise alone and is a convenient function of the signal spectra under the
signal hypothesis. We indicate below how to use the results of the previous section to develop
the F-statistic as an optimal detector in the case of a perfectly correlated signal and give
some results on the expected performance of the beam under the decorrelated signal case.

The results enable a prediction of the performance of each local array as a function of signal
to noise ratio in the perfectly correlated case or as a function of the spectral matrix of the
signal in the decorrelated signal case.

CASE I: PERFECTLY CORRELATED SIGNALS
Shumway et al (1999) establish that the test statistic

(N-1) _B(0)

FO="F" 555

(33)

has asymptotically a central F-distribution with with 2L and 2L(N - 1) degrees of freedom
when there is no signal, where B(f) is the beam power defined in (8) and SSE(D) is the error
power defined in (24). The F-statistic is evaluated at the estimated @ and the approximate

distribution is given by
F(0) ~ (14 Nr)Fypapn-1) (34)

under the hypothesis that the signal is present, giving a computational method for estab-
lishing the false alarm rate and detection probabilities of the detector as a function of the
signal to noise ratio r = P,/P,.

CASE 1I: SIGNAL DECORRELATION

In the case of a decorrelated signal, the optimal detector becomes the likelihood ratio detec-
tor, which will be a monotone function of the generalized beam G(9). One can follow this
argument through as in Shumway et al (1999) but we simply mention here that it may be
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' more realistic to present results involving the simple beamforming statistic, written in the
form ’

BE) =3 IOV
. =1

Now, for the general correlated signal model, we have that Y have mean zero and covariance

matrix _ ,
E(f) = ZOT(N)Z°0) + Pl ). (35)

It follows that
| B(0) ~ (2 O)5(1)2(0)) vz,

which simplifies, on substituting on the right hand side from (35) to
' N

B(a) ~ (Zio.?k(f) +NPu(f))x§ﬁLa : N (36) |

y=1k=1 |

and enables the prediction of the performance of the beam as a function of the signal spectral
" matrix and noise spectra. Note that we have replaced the wave-number by an estimator @

- converging to 0 in probability.

2.5 Empirical Results.

We look first at a simple example involving the three sensors in Figure 1, that recorded the
event Tanana at a small triangular array on Palmyra Island. To provide a baseline example,
we took 2048 points (about 200 seconds) of data and re-aligned the signal to correspond
~ to an approximate velocity of .3 km/sec and an approximate azimuth of 225 degrees. The
array geometry was a triangle with 1 km sides at locations r; = (0,.577)',ry = (.5, —.289)'
and r3 = (—.5, —.289)’, leading to a diagonal covariance matrix R in (9) that has 1/6 on the
. diagonals. The re-aligned signals at sensors A,B and C are shown in Figure 1; the signal
spectrum was centered at .044 Hz (cycles per second), i.e., at a period of about 23 sec. The
coherence between sensors was reasonably high, in this case, with values .86, .83 and .82 for
the three inter-sensor pairs. Hence, there is reason to believe that random univariate signal
model (5) will work reasonably well. '

In order for the large L asymptotics to have a chance, we first chose a band broad enough to
include the entire signal, with L=17 frequency ordinates in the band running from .005 to
.08 Hz. The estimated signal-to-noise ratio P,/P, = 1/r, in this band, using the maximum
likelihood estimators (23) and (25), was 3.16. For the broad band, the estimator for the
velocity was .26(.03) km/sec, using (8) and (4) to get the estimator and (12) to get the
standard deviation (in parentheses). This compares to the velocity of .30 km/sec that we
that input by lining up the largest minima of the signal on each sensor with this velocity. The
azimuth estimator is 225(7) degrees, which is right on the known azimuth. The standard
deviation implies an approximate 95% confidence interval from 211 to 239 degrees. For
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Figure 4. Relief (left column) and contour (right column) plots of F—statxstlcs for detect-

ing infrasonic signal at two bandwidths; narrow band F shows peak at 227(10)
degrees and velocity ¢ = .24(.04) km/sec.

comparison, we tried a narrow band estimator, based on L=3 frequency ordinates, in the
band running from approximately .040 to .048 Hz. The signal-to-noise ratio in this band was
7.36 and the estimated velocity of .24(.05) km/sec is still slightly off. Again, the azimuth
estimator was 227(10) degrees with a slightly larger uncertainty. The increase in the signal-
to-noise ratio in the narrower band does not completely compensate for the loss in bandwidth.

Figure 4 shows the relief plots (a) and (c) and contour plots (b) and (d) of the F-detector given
by the F-statistic (41). The detector is plotted as a function of the wave number coordinates
—.5 £ 6,,6; < .5, where the slowest velocity in the plot corresponds to the velocity on one
of the edges, e.g. 6, = 6, = .5, or .062 km/sec, using (4). Very high velocities occur near
the center 6, = 0, = 0, which corresponds to an infinite velocity. The azimuth can be seen
visually as the angle made by a line drawn from the center to the maximum; here, it is 225
degrees. Note that the asymptotics for this will be less sensitive to large L results, although
one will still need to have the sample length T large. The plotted F-Statistic, for the narrow
band case has 2L = 2(3) = 6 and 2L(N — 1) = 6(2) = 12 degrees of freedom. Note that
F12(.01) = 4.82 and Fg1(.001) = 8.38 so that the .01 and .001 significance points are
exceeded by all velocities and azimuths within the first two contours of the top plot. The
plotted F-Statistic, for the broad band case has 2L = 2(17) = 34 and 2L(N 1) = 34(2) = 68
degrees of freedom Note that F3qes(.01) = 1.95 and Fq5(.001) = 2.42 so that the .01 and
001 significance points are exceeded by all velocities and azimuths within the ﬁrst two
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" Figure 5. Relief (left) and contour (nght) plots of beam power and maximum likelihood

correlated beam power detectors. Beam power shows peak at 225(7) degrees
and velocity V = .26(.03) km/sec., correlated detector shows peaks at 225(6)
degrees and .26(.03) km/sec

contours of the bottom plot.

It is also of interest to determine the estimated velocities and azimuths and their uncertainties
~ under the coherence structure estimated at the array. This requires estimating the variance
of the beamformed estimator maximizing B(6) under the assumption that there is less than
perfect coherence using (21). This can be compared to the variance of generalized beam
maximizing GB(6), given by (18). Both equations require estimating the N x N signal
spectral matrix £(f) and the noise spectrum P,(f). In the case of the 6 maximizing the
beamforming estimator, we used (29)-(32) and the EM steps 1 to 5 to obtain the maximum
~ likelihood estimators for £(f) and P,(f), with 0 fixed at 0. For the case of 8, the maximizer
of the general beam, we simply used the ECM algorithm, following Steps 1-7 as given. Figure
" 5 shows the results using a slightly broader band (L=19) and we note that the estimators
and their standard errors are nearly the same, a reflection, no doubt of the relatively high
~ empirical coherence between the three sensors in this case.
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Section 3
Global Location Capabilities

Integrating or fusing data from the single-array sources into a best overall location, with
an uncertainty region provided, will be an important aspect of evaluating the predicted
performance of the IMS network shown in Figure 2. Hence, we consider a methodology for
using the information developed in the detection and estimation portions of this proposal
for estimating the location vector z = (z;,z3)". In general, we propose a model of the form

b = O,(z) + ex, (37)

where 8, = (élk,ézk)',k = 1,...,n are the estimated wave-number vectors, as computed
from maximizing the beam power (8), or F-statistic (33) at the k** array and

Ll '
0i(z) = Vilz= ] (38)

gives the theoretical connection between the wave-number parameters and location. In (38),
Jx is the center frequency, V; is velocity and ¢; = (cyx, c2x)’ denotes the coordinates of the &
array. It can generally be assumed that velocity is known or can be inferred from the wave-
number plot. It should be noted that there are often separate phases at the same array that
may have their own estimated ) and these are included under those that possibly contribute
to the model (38). Under certain conditions, there may also be estimators of travel times
i, where #,(z) = ||z — ¢x||/V4, perhaps from cross-correlation or other means, that could be
added to the observations on location z. This general framework also does not preclude the
possibility of adding seismic travel times or hyroacoustic information to the stack.

A possible assumption for the bivariate error terms in (87) is that they are independent and
identically distributed with mean zero and 2 x 2 covariance matrix

cov e = 022(5;,), (39)

where the matrix £(d,) comes from (1 1), specialized to the k** array. Note that the com-
ponents of (11) will vary according to the array size and geometry, signal-to-noise ratio and
the time-bandwidth product. The scaling variance o is to account for additional variability
from geophysical sources or from the observed error in a particular event location. We have
used the scaling rather an additive model for the geophysical error expansion to simplify the
Bayesian computation. If there are consistent biases associated with particular regions or
subsets of arrays, constant correction terms can be added to the defining Equation (37). Ifa
number of events are available, the correction terms may even be estimated by least squares
using consistent source-receiver pairs. :
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As an example of a small demonstration set, we consider Figure 2, which shows 14 IMS array
centers ¢, proposed for the southwest quadrant of the world-wide network. For purposes
of illustration, we also show two hypothetical events that might generate observed wave-
number parameters 0.,k = 1,...,n for incorporation into the location model defined in (37)
and (38). In Section 3.1, we dlscuss an approach to combining or fusing the wave-number
parameters into an overall location, based on a given fixed set of recording arrays and their
- characteristics, as defined by the signal-to-noise ratio r, the time-bandwidth product BT
and the array geometry, as it is expressed in terms of R and N in (11)

3.1 Fusion Locations Via Classical and Bayesian Methqu.

We extend the classical methods first to the case where we observe wave-number parameters
and their covariance matrix from n arrays and wish to combine or fuse the information into
an overall location. The nonlinear model (37) and (38) can be treated in the usual way.
That is, expand 8;(z) around some initial value, say z = zp and write a linearization as

B — 04(m0) = Au(zo)(z - Zo) +ex, (40)
where |
Az = 22 (@)

is the usual 2 X 2 matrix of partial derivatives of 8;(z). Then, stacking the n, 2 x 1 wave-
number vectors and minimizing the weighted sum of squared errors can be done by succes-
sively estimating 8 = z — 2o. This leads to

£ = 29+ C(z0) kz Au(zo) =106 B — Ox(za)], (42)
=1
where n ‘ : |
C(zo) =,§_3A»(zo)' =B Aelmo). (43)

It follows that the estimated cova.rianc_e matrix of the final estimator is
cov & = g°C~1(%). ' (44)

| Equations (42) and (43) exhibit the fusion estimators at each stage as pooled estimators over
the n arrays as long as the variances are known. We may also develop a confidence ellipse
for the fusion estimators under assumptions (A), (B) and (C), as given below.

A. VARIANCE KNOWN

We may assume that the variance o? is known, either from the statistical variances of the
computed wave-number estimators or from a combination of factors including the statistical
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wave-number variances. In this case, the generalization of the usual chi-squared ellipse
considered by Evernden (1969) can be computed from the fact that

(@ - £)'C(z)(z - £) ~ 0*X3, | (45)

where ~ denotes s distributed as and x3 denotes a chi-squared distribution with 2 degrees
of freedom. Note that the statistical uncertainty of the wave-number estimators is already
in the matrix I(f;) so that a plausible estimator for 02 in the absence of other factors might
be unity.

B. VARIANCE UNKNOWN

If variances are known only up to the constant o3, this scaling variance may be estimated
from the set of arrays that record the event. For the Gaussian case, the maximum likelihood
estimator is proportional to the unbiased estimator

o= 5(-71—1:-13"2::1(&,, -a,,(e))' 276 (6 - 04(2)). (46)

This case, originally considered in Flinn(1965), leads to a confidence interval based on the

F-distribution, namely
(I - i)'C(f-') (.‘B - i’) ~ 282F2,2(n._1), (47)

where Fj 3,1y denotes the F-distribution with 2 and 2(n — 1) degrees of freedom.

'
1Ay
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Ot Dav.
Figure 6. Possible prior distributions for standard deviations of measured wave-number

estimates.

C. VARIANCE SUBJECT TO PRIOR DISTRIBUTION

It is often the case that it is unrealistic to assume that the variance is known exactly because
the ellipse defined by (45) becomes too small. For a small number of arrays, the ellipse based
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on the F-statistic (47) is often much too large. A useful compromise, introduced by Jordan
‘and Sverdrup (1981)and continued by Bratt and Bache (1988), is to quantify the initial
uncertainty about o? by assigning it a prior distribution with density function x(0?). It
is convenient to use the inverted chi-squared distribution with pa.ra,meters m, representing
the equivalent sample size embodied in the prior information and o}, representing a prior
centering value for the variance. For the form of the density function, see Anderson (1984).
Figure 6 plots the density function for the standard deviation o for gp = 1 and m = 10, 30.
We note that the two values put the standard deviation between .4 and 2 for m = 10 and
between .6 and 1.6 for m = 30 For a fully Bayesian approach, we assume a non-informative
prior on (—00 < Z1,Z2 < 00) for the location z and compute the posterior distribution, given
- the wave-number observations, as a bivariate t-distribution with 2 and 2(n — 1) +m degrees
of freedom. The posterior estimator for the variance is |

_2(n-1)s* + ma} | o
"= 2(n-'1)+m°’ . (48)

implying that the best approach is simply to pool the initial variance ¢ and the sample
~ variance 5%, weighted by their degrees of freedom. The quadratic form involving the location
vector z in the multivariate t has an F-distribution, making the 95% posterior probability
ellipse for the location expressible as o

(- 3YC@E)z-3) ~ 20%Fagptyem (49)

It is interesting that the form of the posterior probability ellipse (49) is similar to (47) but
will be tighter because of the additional degrees of freedom for the F-statistic. Hence, the
Bayesian solution represents a compromise between (45) and (47), the methods of (A) and

(B).

3.2 Locations Using the IMS Array.

Given the theoretical developments of the previous sections, it is now possible to begin to
assess the potential location capabilities of the reduced IMS network shown in Figure 2. It is
likely that there will be relatively few stations recording each event so we will make compu-
tations based on the Bayesian approach described in (C) of the previous section. The natural
measure of error in the estimated location is the confidence ellipse in the classical methods

(A) and (B) and the posterior probability ellipse for the Bayesian approach described in (C).

For the small-scale example considered here, the following inputs are needed to estimate

location capability. We confine this particular example to the perfectly correlated case

although it is obvious that this would not be constraint because of the separate analysis
available for decorrelated arrays.
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SIGNAL TO NOISE RATIO

The signal to noise ratio r, defined in (10) as the ratio of the signal spectrum to the noise spec-
trum, is critical for determining the covariance input (11) which is needed for the covariance
matrix ¥(6,) in the posterior probability intervals. The signal to noise ratio also determines
the detection probability from (34), when the signal is present; this determines the probable
configuration of recording stations. The signal to noise ratio can be estimated using (23)
and (25) if data are available or it can be assumed from known operating conditions. For
the example given here, it is assumed to be r = 2,3.

ARRAY GEOMETRY

The geometry of each local array affects the detection probability (34) and the estimated
covariance of the input wave-number parameter £(6;) in (11), essentially through the number
of sensors, N, and the covariance matrix of the sensor locations R. In the example given
next, we took two array geometries (see Blandford, 1996), namely a triangle with a 1 km
baseline and a center element (N=4) and and extended version that adds an interior inverted
inner triangle with baseline distance .2 km (N=7).

TIME-BANDWIDTH PRODUCT, FREQUENCY, VELOCITY

The time-bandwidth product L = BT affects both the covariance matrix I(f;) in (11)
and the detection probability (34). Again this will change both the input covariance for the
location computation and will be a determinant of the configuration of detecting local arrays.
We assumed here a center frequency of 1 Hz and a time-bandwidth product of BT = 17,
which represented a reasonable compromise from our earlier work (Shumway et all, 1999)
with a Pacific Islands event. Velocity was assumed to be .3 km/sec in the example but it
could be estimated for a given event at a given station using (3).

PRIOR DISTRIBUTION OF SCALING VARIANCE

As an approximate prior distribution for the scaling variance 2, we can examine plots like
Figure 6 for various degrees of freedom, mn, which can be regarded as the equivalent sample
size that would have been required to produce the required degree of accuracy for 2. For
purposes of illustration, assume that we expect the variance to be o2 = 1 with some spread
about the value, corresponding to m = 10. This is probably optimistic as one might expect
scaling due to geophysical causes to be somewhat greater than unity but the value 1 provides
a reasonable illustrative constant. Figure 6 shows the range of values that could be expected
with this choice and we assumed that the sample variance s* = 1 would have been computed
using (46).

Using the above specifications gives the posterior estimators for the variance from (48) with
n =4 and n = 7 corresponding to the two local array configurations. Assuming the true
location at z = zy, corresponding to the two known locations marked in Figure 2 gives
reasonable scenarios for event location. The posterior probability ellipses can be computed
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Fxgure 7. Posterior probability (90 and 95%) ellipses for various array detection config-
urations assuming 7-element arrays, perfect signal correlation and S/N = 2.

using (49) as a function of z, evaluated at = zo, with C(zy) computed from (43).

Figure 7 shows the resulting posterior probability ellipses for the extended array (n = 7),
assuming some typical recording configurations. For Event 1, we assumed two configurations
of the closest three stations (5,8,10) detected the event. Note that the area of the 90% ellipse
decreased by about 20% in going from two to three station detection. For Event 2, comparing
n = 4 station detection against n = 7 station detection reduced the area of the ellipse by
about 30%. ' .

Table 1 gives a more detailed accounting as to what happens for various scenarios over the

recording configurations in Figure 7. Here, we see 30-40% reductions achieved by increasing

the signal to noise ratio from 2 to 3. Reductions achieved by addmg the three center elements
are more modest, on the order of 7-10%.
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Table 1: Areas (km?) of 90% Posterior Probability Ellipses for Simple and Extended
Triangular Arrays

Triangular Array | Extended __Array
Stations/Event | S/N=2 S/N=3| S§/N=2 S/N=3
5,8/1 55654 3566 5087 3316

5,8,10/1 4448 2856 4074 2656
4,12,13/2 3129 2002 2858 1863
1,2,4,11,12,13/2 2176 1397 1992 1299
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Section 4
Discussion

In this project we have developed an integrated approach to estimating velocities and az-
imuths from a collection of local arrays and then fusing the data into Bayesian locations and
their associated uncertainty ellipses. A small-array theory is developed that characterizes the
performance of local optimal detectors under signal correlation and decorrelation scenarios.
We compare the performance of maximum likelihood estimators such as the beam power
and the generalized beam power as a function of array geometry and signal to noise ratio.
Optimal local-array geometries are suggested that are relevant to the problem of designing
an optimal infrasound array. 4

Wave-number estimators along with estimated variance covariance matrices are used as input
to study the size and orientation of 90% posterior probability ellipses for various likely
subsets of detecting stations within the global infrasound array proposed for the Prototype
International Data Center (IMS). Adding detecting stations decreased the size of the 90%
ellipse by about 10-20% per added station, whereas increasing the signal to noise ratio from 2 -
to 3 decreased the size of the ellipse by 30-40%. Adding an inner triangle to the conventional
1 km triangular array gave more modest reductions of 7-10%.

Since the above conclusions are tentative and only apply to limited array configurations,
any recommendations based on them should be considered as preliminary. The solution
for a fixed configuration of recording arrays is not the only factor of interest since there
will be multiple possible recording configurations possible for any given event. That is, the
capability of the network will be an expected value, accumulated over possible recording
configurations, weighted by the probability of each particular configuration. The resulting
network capability can be contoured by setting an event at each location on the world-wide
grid and then computing the probability that each station detects the event . We may then
compute a weighted average of some parameter reflecting the location capability. For this
discussion, we assume that the area of the 90% ellipse is of interest, where the ellipse may
be a confidence ellipse under cla.ssxcal assumptxons or a posterior probability ellipse under
" the Bayesian paradigm.

This might proceed in a manner that essentially parallels the Networth calculations made
by Wirth et al (1976) in the case of seismic arrays. It would be most useful to develop an
expression for the average area expected over all possible configurations of detecting arrays.
That is, define a detection indicator D that is one if the array detects and is zero otherwise,
for the full set of possible detecting arrays, say, for k = 1,2,..., K of them. If we define
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Pr = Pr{D; = 1}, the joint density of the random variables D;, D, ..., Dy would be

K
P(Dy,...,Dg) = [[p2*Q = p)*=2b. (50)

=1
The probabilities can be arbitrary for each station, based on recorded data or on the esti-
mated probabilities computed from the result (4). Now, for any given event, we can observe
2K possible configurations of detecting stations and each one of them will give a predicted
area. We can multiply each configuration probability by its area and add them up to get
the average areas of location for that particular source. Alternately, and perhaps, easier
would be to simulate values of D,,..., Dx repeatedly and simply average the resulting ar-
eas. In either case, it is clear that a relatively small computing effort will yield an average
predicted 90% uncertainty area for each location. Plotting plotting the results as a grid of
location contours on the map would give a more detailed index of potential global network
performance.
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ITT SYSTEMS CORPORATION
ATTN: AODTRA/DTRIAC
1680 TEXAS STREET, SE
KIRTLAND AFB, NM 87117-5669
ATTN: DTRIAC
ATTN: DTRIAC/DARE

JAYCOR
1410 SPRING HILL ROAD, SUITE 300
MCLEAN, VA 22102
ATTN: DR C. P. KNOWLES
ATTN: T.J. HANNIGAN

JAYCOR, INC.

P. 0. BOX 85154

SAN DIEGO, CA 92138-5154
ATTN: M. TREADAWAY
ATTN: R. STAHL

LACHEL & ASSOCIATES INC.
P. O. BOX 5266
GOLDEN CO 80401

ATTN: D. LACHEL

LOGICON INC.
LOGICON ADVANCED TECHNOLOGY
2100 WASHINGTON BLVD
ARLINGTON, VA 22204-5704

ATTN: F.DICKERSON

LOGICON R AND D ASSOCIATES
P. 0. BOX 100
PAHRUMP, NV 89041

ATIN: J.LACOMB

MAXWELL LABORATORIES, INC.
S-CUBED WASHINGTON RESEARCH OFFICE
11800 SUNRISE VALLEY DRIVE, SUITE 1212
RESTON, VA 22091

ATTN: DR.T.J. BENNETT

ATTN: J.R. MURPRHY

DL-2

MAXWELL TECHNOLOGIES INC.

SYSTEMS DIVISION

9210 SKY PARK COURT

SAN DIEGO, CA 92123-4302
ATTN: DRE. PETERSON
ATTN: DRJ. L. STEVENS
ATTN: DR G. E. BAKER

MISSION RESEARCH CORP.
8560 CINDERBED ROAD, SUITE 700
NEWINGTON, VA 22122

ATTN: DR. M.FISK

MULTIMAX, INC

1441 MC CORMICK DRIVE

LANDOVER, MD 20785
ATTN: DRI N.GUPTA
ATTN: DR W. CHAN
ATTN:. MS L. GRANT

PACIFIC NORTHWEST LABORATORIES
A DIV OF BATTELLE MEMORIAL INST.
P.O.BOX 999
RICHLAND, MA 89352

ATTN: TECHNICAL STAFF, MS K5-12

PACIFIC-SIERRA RESEARCH CORP.
WASHINGTON OPERATIONS
1400 KEY BOULEVARD, SUITE 700
ARLINGTON, VA 22209

ATTN: N. L. DUNCAN

S-CUBED
A DIVISION OF MAXWELL LABS, INC.
11800 SUNRISE VALLEY DRIVE, SUITE 1212
RESTON, VA 22091
ATTN: J. MURPHY

SCIENCE & ENGINEERING ASSOCIATES, INC.
7918 JONES BRANCH DRIVE, SUITE 500
MCLEAN, VA 22102

ATTN: R. BEATY

SCIENCE APPLICATION INT'L CORP.
3309 NW GOLDEN PLACE
SEATTLE, WA 98117

ATTN: A. RATLETON

SCIENCE APPLICATIONS INTL CORP.
10260 CAMPUS POINT DRIVE
SAN DIEGO, CA 92121-1578
ATTN: DRT. C. BACHE, JR.
ATTN: DR T. J. SERENO, JR.



SCIENCE APPLICATIONS INTL CORP
2111 EISENHOWER AVENUE, SUITE 205
ALEXANDRIA, VA 22314

ATTN: DRD. PIEPENBURG " -

SCIENCE APPLICATIONS INTL CORP.

GEOSPATIAL DATA DEVELOLPMENT DIVISION

700 SOUTH BABCOCK STREET, SUITE 300
MELBOURNE, FL 32001
ATTN: R BJURSTROM

SCIENCE APPLICATIONS INTL CORP.
P. 0. BOX 1303
MCLEAN, VA 22102

ATTN: D.BACON .

SOUTHERN METHODIST UNIVERSITY
DEPT OF GEOLOGICAL SCIENCE
P. 0. BOX 395
DALLAS, TX 75275-0395
ATTN: DRB. STUMP
ATTN: E.HERRIN

SRI INTERNATIONAL

333 RAVENSWOOD AVENUE
MENLO PARK, CA 94025-3434
- ATTN: D.CURRAN

ST LOUIS UNIVERSITY

P.O. BOX 8148

PIERRE LACLEDE STATION

ST LOUIS, MO 63156-8148
ATTN: PROF B, HERRMANN
ATTN: PROF B. J. MITCHELL

TASC, INC
1101 WILSON BOULEVARD, SUITE 1500
ARLINGTON, VA 22209-2248

. ATTN: J.A MOSORA

TEXAS, UNIVERSITY AT AUSTIN
P.0.BOX 7726
AUSTIN, TX 78712

ATTN: C.A FROELICH

WOODWARD-CLYDE CONSULTANTS
$66 EL DORADO STREET
PASADENA, CA 91100-3245

ATTN: DRB.B.WOODS

ATTN: DRC. K. SAIKIA

DEPARTMENT OF ENERGY

BECHTEL NEVADA

P. 0. BOX 808

LOS ALAMOS, NM 87544-0809
ATTN: D.EILERS

DL-3

BECHTIZL NEVADA, INC
P. 0. 20X 98521
LAS VEGAS, NV 89193-8521
- ATTN: D. BARKER, M/S NLV0S3

DEPARTMENT OF ENERGY
1000 INDEPENDENCE AVENUE SW
WASHINGTON, DC 20585
ATTN: D. WATKINS, NN-42/GA007
ATTN: E. MANAK, NN-30/FORS
ATTN: E.STOVER
ATTN: S. RUDNICK/NN-20

UNIVERSITY OF CALIFORNIA
LAWRENCE LIVERMORE NATIONAL LAB
P. 0. BOX 808
LIVERMORE, CA 84551-9900
- ATTN: K. NAKANISHI
ATTN: W.J.HANNON, JR, MS, L-103
ATTN: F.HEUZE, MS, L-200
ATTN: L. GLENN, MS, L-200
ATTN: DR J.ZUCCA, MS, L-205
ATTN: M. DENNY, MS, L-205
ATTN: TECHNICAL STAFF, MS, L-200
ATTN: TECHNICAL STAFF, MS, L.-208
ATTN: TECHNICAL STAFF, MS, L-205

. LOS ALAMOS NATIONAL LABORATORY

P.0.BOX 1663

MAIL STOP G-733

LOS ALAMOS, NM 87545
ATTN: F.CHAVEZ, MS-D460
ATTN: D. WESTERVELT, MS-A112
ATTN: D. STEEDMAN, MS-F607
ATTN: TECHNICAL STAFF, MS-C335
ATTN: TECHNICAL STAFF, MS-D460
ATTN: TECHNICAL STAFF, MS-F665

PACIFIC NORTHWEST NATIONAL

LABORATORY

P.O. BOX 999
BATTELLE BOULEVARD
RICHLAND, WA 99352
ATTN: D.N.HAGEDORN, MS K5-12

SANDIA NATIONAL LABORATORIES
ATTN: MAIL SERVICES
P. 0. BOX 5800
ALBUQUERQUE, NM 87185-0459
ATTN: TECHNICAL STAFF, DEPT 5704,
MS 0655
ATTN: TECHNICAL STAFF, DEPT 5704,
‘MS 0979
~ ATTN: TECHNICAL STAFF, DEPT 5736,
MS 0655
ATTN: TECHNICAL STAFF, DEPT 9311,
‘ MS 1159



SEISMOLOGICAL LABORATORY 252-21
CALIFORNIA INSTITUTE OF TECHNOLOGY
PASADENA, CA 91125 '

ATTN: T.AHERNS

UNIVERSITY OF CALIFORNIA -
EARTH SCIENCE DIVISION
479 MCCONE HALL, LBNL, 80-2106
BERKELEY, CA 94720

ATTN: L. JOHNSON, MS-80-1116

DEPARTMENT OF THE AIR FORCE

HEADQUARTERS

AFTAC/TTR

1030 SOUTH HIGHWAY A1A

PATRICK AFB, FL 32025-3002
ATTN: V. HSU

AIR FORCE RESEARCH LABATORY

29 RANDOLPH ROAD

HANSCOM AFB, MA 01731-5000
ATTN: DR D. HARKRIDER
ATTN: DR D. REITER
ATTN: GPE, J. LEWKOWICZ
ATTN: J. RONG-SONG

AIR FORCE RESEARCH LABORATORY

5 WRIGHT STREET

HANSCOM AFB, MA 01731-3004
ATTN. RESEARCH LIBRARY, TL

AIR FORCE TECH APPLICATIONS CENTER
1300 17TH STREET, SUITE 1450
ARLINGTON, VA 22209

ATTN: R. BLANDFORD

AIR FORCE TECHNICAL APPLICATIONS
CTRAT
1030 S HIGHWAY AIA
PATRICK AFB, FL 32925-3002
ATTN: CA/STINFO
ATTN: DR B. KEMERAIT
ATTN: DR D. RUSSELL
ATTN: G. ROTHE, TTR
ATTN: J. C.LUCAS
ATTN: M. SIBOL

DIRECTORY OF OTHER (LIBRARIES AND
UNIVERSITIES)

ARIZONA, UNIVERSITY OF
DEPT. OF GEOSCIENCES/SASO
TUCSON, AZ 85721

ATTN: PROF T.C. WALLACE

DOL-4

BOISE STATE UNIVERSITY
GEOSCIENCES DEPARTMENT
1910 UNIVERSITY DRIVE
BOISE, ID 83725

ATTN: J. E.ZOLLWEG

BOSTON COLLEGE
INSTITUTE FOR SPACE RESEARCH
140 COMMONWEALTH AVENUE
CHESTNUT HILL, MA 02167

ATTN: PROF L. SYKES

CALIFORNIA INSTITUTE OF TECHNOLOGY
DIVISION OF GEOLOGY & PLANETARY
SCIENCES
PASADENA, CA 91125

ATTN: PROF D. V. HELMBERGER

CALIFORNIA-DAVIS, UNIVERSITY OF

DAVIS, CA 985616
ATTN: R. H. SHUMWAY, DIV STATISTICS
ATTN: S.E.KIM

CALIFORNIA-SANTA CRUZ, UNIVERSITY OF
INSTITUTE OF TECTONICS
SANTA CRUZ, CA 95064

ATTN: DRR. S.WU

ATTN: PROT. LAY

COLORADO-BOULDER, UNIVERSITY OF
BOULDER, CO 80309
ATTN: M. RITZWOLLER,
CAMPUS BOX 390
ATTN: PROF C. ARCHAMBEAU

COLUMBIA UNIVERSITY
LAMONT-DOHERTY EARTH OBSERVATORY
PALISADES, NY 10964

ATTN: DRL.R. SYKES

ATTN: DR J. XIE

ATTN: PROF P. G. RICHARDS

CONNECTICUT, UNIVERSITY OF
DEPT. OF GEOLOGY & GEOPHICS
STOORS, CT 06269-2045
ATTN: PROF V. F. CORMIER, U-45,
ROOM 207

CORNELL UNIVERSITY
DEPARTMENT OF GEOLOGICAL SCIENCES .
3126 SNEE HALL
ITHACA, NY 14853
ATTN:. PROF M. BARAZANGI



HARVARD UNIVERSITY

HOFFMAN LABORATORY -

20 OXFORD STREET - _

CAMBRIDGE, MA 02138 o
ATTN: PROF A. DZIEWONSKI
ATTN: PROF G. EKSTROM

IRIS
1200 NEW YORK AVENUE, NW, SUITE 800
WASHINGTON, DC 20005

ATTN: DR D. SIMPSON

ATTN: DR G. E. VAN DER VINK

MASSACHUSETTS INSTITUTE

OF TECHNOLOGY

EARTH RESOURCES LABORATORY

42 CARLETON STREET
CAMBRIDGE, MA 02142

- ATTN: PROF M. N. TOKSOZ

MICHIGAN STATE UNIVERSITY LIBRARY
450 ADMINISTRATION BUILDING
EAST LANSING, M! 48824

ATTN: K. FUJITA

NEW MEXICO STATE UNIVERSITY
DEPARTMENT OF PHYSICS
LAS CRUCES, NM 88003
- ATTN: PROF J. NI
ATTN: PROF T. HEARN

PENNSYLVANIA STATE UNIVERSITY
GEOSCIENCES DEPARTMENT
403 DEIKE BUILDING
UNIVERSITY PARK, PA 16802
ATTN: PROF C. A. LANGSTON
ATTN: PROF S. ALEXANDER

SAN DIEGO STATE UNIVERSITY

DEPT OF GEOLOGICAL SCIENCES

SAN DIEGO, CA 92182 :
ATTN: PROF 8. M. DAY

SOUTHERN METHODIST UNIVERSITY
FONDREN LIBRARY

DALLAS, TX 75275

- ATTN: B. STUMP

ATTN: G. MCCARTOR, DEPT OF PHYSICS
ATTN: H.L.GRAY, DEPT OF STATISTICS

UNIVERSITY OF COLORADO

CAMPUS BOX 583

BOULDER, CO 80309
ATTN: DRA.L LEVSHIN

DL-5

UNIVERSITY OF SOUTHERN CALIFORNIA
520 SEAVER SCIENCE CENTER
UNIVERSITY PARK
LOS ANGELES, CA 90089-0483

ATTN: PROF C. G. SAMMIS

FOREIGN

AUSTRALIAN GEOLOGICAL
SURVEY ORGANIZATION
CORNER OF JERRAGOMRRRA AND
NINDMARSH DRIVE
CANBERRA, ACT 2609
AUSTRALIA

ATTN: D. JEPSON

GEOPHYSICAL INSTITUTE OF ISRAEL

" HAMASHBIR STREET, 1

HOLON, 58122 ISRAEL
~ ATTN: DRY. GITTERMAN

LIRIGM.-BP.68
38402 ST. MARTIN D'HERES
CEDEX, FRANCE

ATTN: DR M. BOUCHON

MINISTRY OF DEFENSE/
PROCUREMENT EXECUTIVE
ALACKNESS, BRIMPTON

" READING FG7-4RS ENGLAND

ATTN: DR P. MARSHALL

NTNF/NORSAR

P. 0. BOX 51

N-2007 KJELLER, NORWAY
ATTN: DR F. RINGDAL
ATTN: T. KVAERNA

OBSERVATOIRE DE GRENOBLE

LR.IGM.-B.P. 53 '

38041 GRENOBLE, FRANCE
ATTN: DR M. CAMPILLO

RESEARCH SCHOOL OF EARTH SCIENCES
INSTITUTE OF ADVANCES STUDIES
G.P.0.BOX 4
CANABERRA 2601, AUSTRALIA

- ATTN: PROF B. L. N. KENNETT

RUHR UNIVERSTY/BOCHUM

INSTITUTE FOR GEOPHYSIK

P.0.BOX 102148 '

463 BOCHUM 1, GERMANY
ATTN: PROF H.P. HARJES




SEISMOLOGICAL DIVISION
IRPG '
P.O. BOX 2286
HOLON 58122
ISRAEL

ATTN: A. SHAPIRA

SOCIETE RADIOMANA

27 RU CLAUDE BERNARD

75005 PARIS, FRANCE
ATTN: DR B. MASSINON
ATTN: DR P. MECHLER

UNIVERSITY OF BERGEN
INSTITUTE FOR SOLID EARTH PHYSICS
ALLEGATION 40
N-5007 BERGEN, NORWAY
ATTN. R. E. HUSEBYE

UNIVERSITY OF CAMBRIDGE
DEPARTMENT OF EARTH SCIENCES
MADINGLEY RISE, MADINGLEY ROAD
CAMBRIDGE CB3 0EZ, ENGLAND
ATTN. PROF K. PRIESTLEY

. OTHER GOVERNMENT

CENTRAL INTELLIGENCE AGENCY
WASHINGTON, DC 20505
ATTN: CHIEF, OTI/MNG/NWTT - ST47 NHB

NATIONAL ARCHIVES AND

RECORDS ADMINISTRATION

8601 ADELPHI ROAD, ROOM 3360

COLLEGE PARK, MD 20740-6001
ATTN: USER SERVICE BRANCH

NATIONAL PHOTOGRAPHIC

INTERPRETATION CENTER

SOUTHWEST STATION

P. 0. BOX 70967

WASHINGTON, D C 20024-0967
ATTIN: K. TIGHE-WHITE
ATTN: M. BURNS

U S DEPARTMENT OF STATE
320 21ST STREET, NW
WASHINGTON, DC 20451
ATTN: DR E. LACEY, ACDANVI,
ROOM §741
ATTN: K. WARD
ATTN: R. DAY
- ATTN: T. RAY

DL-6

US DEPARTMENT OF THE INTERIOR
US GEOLOGICAL SURVEY NATIONAL CENTE|
MILITARY GEOLOGY PROJECT
12201 SUNRISE VALLEY DRIVE
RESTON, VA 22029
ATTN: B.LEITH
ATTN: DR J. FILSON
ATTN: W. LEITH, MS 828
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